65 research outputs found

    Genomic DNA Pooling Strategy for Next-Generation Sequencing-Based Rare Variant Discovery in Abdominal Aortic Aneurysm Regions of Interest—Challenges and Limitations

    Get PDF
    The costs and efforts for sample preparation of hundreds of individuals, their genomic enrichment for regions of interest, and sufficient deep sequencing bring a significant burden to next-generation sequencing-based experiments. We investigated whether pooling of samples at the level of genomic DNA would be a more versatile strategy for lowering the costs and efforts for common disease-associated rare variant detection in candidate genes or associated loci in a substantial patient cohort. We performed a pilot experiment using five pools of 20 abdominal aortic aneurysm (AAA) patients that were enriched on separate microarrays for the reported 9p21.3 associated locus and 42 additional AAA candidate genes, and sequenced on the SOLiD platform. Here, we discuss challenges and limitations connected to this approach and show that the high number of novel variants detected per pool and allele frequency deviations to the usually highly false positive cut-off region for variant detection in non-pooled samples can be limiting factors for successful variant prioritization and confirmation. We conclude that barcode indexing of individual samples before pooling followed by a multiplexed enrichment strategy should be preferred for detection of rare genetic variants in larger sample sets rather than a genomic DNA pooling strategy

    Identification of factors required for meristem function in Arabidopsis using a novel next generation sequencing fast forward genetics approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phenotype-driven forward genetic experiments are powerful approaches for linking phenotypes to genomic elements but they still involve a laborious positional cloning process. Although sequencing of complete genomes now becomes available, discriminating causal mutations from the enormous amounts of background variation remains a major challenge.</p> <p>Method</p> <p>To improve this, we developed a universal two-step approach, named 'fast forward genetics', which combines traditional bulk segregant techniques with targeted genomic enrichment and next-generation sequencing technology</p> <p>Results</p> <p>As a proof of principle we successfully applied this approach to two Arabidopsis mutants and identified a novel factor required for stem cell activity.</p> <p>Conclusion</p> <p>We demonstrated that the 'fast forward genetics' procedure efficiently identifies a small number of testable candidate mutations. As the approach is independent of genome size, it can be applied to any model system of interest. Furthermore, we show that experiments can be multiplexed and easily scaled for the identification of multiple individual mutants in a single sequencing run.</p

    Vitamin D levels and susceptibility to asthma, elevated immunoglobulin E levels, and atopic dermatitis: A Mendelian randomization study.

    Get PDF
    BACKGROUND: Low circulating vitamin D levels have been associated with risk of asthma, atopic dermatitis, and elevated total immunoglobulin E (IgE). These epidemiological associations, if true, would have public health importance, since vitamin D insufficiency is common and correctable. METHODS AND FINDINGS: We aimed to test whether genetically lowered vitamin D levels were associated with risk of asthma, atopic dermatitis, or elevated serum IgE levels, using Mendelian randomization (MR) methodology to control bias owing to confounding and reverse causation. The study employed data from the UK Biobank resource and from the SUNLIGHT, GABRIEL and EAGLE eczema consortia. Using four single-nucleotide polymorphisms (SNPs) strongly associated with 25-hydroxyvitamin D (25OHD) levels in 33,996 individuals, we conducted MR studies to estimate the effect of lowered 25OHD on the risk of asthma (n = 146,761), childhood onset asthma (n = 15,008), atopic dermatitis (n = 40,835), and elevated IgE level (n = 12,853) and tested MR assumptions in sensitivity analyses. None of the four 25OHD-lowering alleles were associated with asthma, atopic dermatitis, or elevated IgE levels (p ≥ 0.2). The MR odds ratio per standard deviation decrease in log-transformed 25OHD was 1.03 (95% confidence interval [CI] 0.90-1.19, p = 0.63) for asthma, 0.95 (95% CI 0.69-1.31, p = 0.76) for childhood-onset asthma, and 1.12 (95% CI 0.92-1.37, p = 0.27) for atopic dermatitis, and the effect size on log-transformed IgE levels was -0.40 (95% CI -1.65 to 0.85, p = 0.54). These results persisted in sensitivity analyses assessing population stratification and pleiotropy and vitamin D synthesis and metabolism pathways. The main limitations of this study are that the findings do not exclude an association between the studied outcomes and 1,25-dihydoxyvitamin D, the active form of vitamin D, the study was underpowered to detect effects smaller than an OR of 1.33 for childhood asthma, and the analyses were restricted to white populations of European ancestry. This research has been conducted using the UK Biobank Resource and data from the SUNLIGHT, GABRIEL and EAGLE Eczema consortia. CONCLUSIONS: In this study, we found no evidence that genetically determined reduction in 25OHD levels conferred an increased risk of asthma, atopic dermatitis, or elevated total serum IgE, suggesting that efforts to increase vitamin D are unlikely to reduce risks of atopic disease

    Advances in the treatment of prolactinomas

    Get PDF
    Prolactinomas account for approximately 40% of all pituitary adenomas and are an important cause of hypogonadism and infertility. The ultimate goal of therapy for prolactinomas is restoration or achievement of eugonadism through the normalization of hyperprolactinemia and control of tumor mass. Medical therapy with dopamine agonists is highly effective in the majority of cases and represents the mainstay of therapy. Recent data indicating successful withdrawal of these agents in a subset of patients challenge the previously held concept that medical therapy is a lifelong requirement. Complicated situations, such as those encountered in resistance to dopamine agonists, pregnancy, and giant or malignant prolactinomas, may require multimodal therapy involving surgery, radiotherapy, or both. Progress in elucidating the mechanisms underlying the pathogenesis of prolactinomas may enable future development of novel molecular therapies for treatment-resistant cases. This review provides a critical analysis of the efficacy and safety of the various modes of therapy available for the treatment of patients with prolactinomas with an emphasis on challenging situations, a discussion of the data regarding withdrawal of medical therapy, and a foreshadowing of novel approaches to therapy that may become available in the future

    Environmental effects of ozone depletion, UV radiation and interactions with climate change : UNEP Environmental Effects Assessment Panel, update 2017

    Get PDF
    Peer reviewe

    Farming, foreign holidays, and vitamin D in Orkney

    Get PDF
    Orkney, north of mainland Scotland, has the world's highest prevalence of multiple sclerosis (MS); vitamin D deficiency, a marker of low UV exposure, is also common in Scotland. Strong associations have been identified between vitamin D deficiency and MS, and between UV exposure and MS independent of vitamin D, although causal relationships remain to be confirmed. We aimed to compare plasma 25-hydroxyvitamin D levels in Orkney and mainland Scotland, and establish the determinants of vitamin D status in Orkney. We compared mean vitamin D and prevalence of deficiency in cross-sectional study data from participants in the Orkney Complex Disease Study (ORCADES) and controls in the Scottish Colorectal Cancer Study (SOCCS). We used multivariable regression to identify factors associated with vitamin D levels in Orkney. Mean (standard deviation) vitamin D was significantly higher among ORCADES than SOCCS participants (35.3 (18.0) and 31.7 (21.2), respectively). Prevalence of severe vitamin D deficiency was lower in ORCADES than SOCCS participants (6.6% to 16.2% p = 1.1 x 10(-15)). Older age, farming occupations and foreign holidays were significantly associated with higher vitamin D in Orkney. Although mean vitamin D levels are higher in Orkney than mainland Scotland, this masks variation within the Orkney population which may influence MS risk

    Autologous haematopoietic stem cell transplantation for treatment of multiple sclerosis

    Get PDF
    Autologous haematopoietic stem cell transplantation (AHSCT) is a multistep procedure that enables destruction of the immune system and its reconstitution from haematopoietic stem cells. Originally developed for the treatment of haematological malignancies, the procedure has been adapted for the treatment of severe immune-mediated disorders. Results from ~20 years of research make a compelling case for selective use of AHSCT in patients with highly active multiple sclerosis (MS), and for controlled trials. Immunological studies support the notion that AHSCT causes qualitative immune resetting, and have provided insight into the mechanisms that might underlie the powerful treatment effects that last well beyond recovery of immune cell numbers. Indeed, studies have demonstrated that AHSCT can entirely suppress MS disease activity for 4–5 years in 70–80% of patients, a rate that is higher than those achieved with any other therapies for MS. Treatment-related mortality, which was 3.6% in studies before 2005, has decreased to 0.3% in studies since 2005. Current evidence indicates that the patients who are most likely to benefit from and tolerate AHSCT are young, ambulatory and have inflammatory MS activity. Clinical trials are required to rigorously test the efficacy, safety and cost-effectiveness of AHSCT against highly active MS drugs
    corecore